STEM Notebook Example

$$
\begin{aligned}
& \text { now to series or } \\
& \text { wire parallel } \\
& \begin{array}{l}
\text { gwixin } \\
\text { yetwed }
\end{array} \\
& \text { Tasks } \\
& \text { Body \& wheels - shane } 1 \text { began } \\
& \text { Electronics \& Drive - sarah \& Wayne }
\end{aligned}
$$

https://www.grc.nasa.gov/www/k-12/ airplane/shaped.html

https://www.pakwheels.com/blog/history-drag-coefficients-cars/

This teardrop shape is the most aerodynamic but poses

$$
\begin{aligned}
& \text { a range oc issues in tw-mi-g it } \\
& \text { into a functioning ca- }
\end{aligned}
$$

- There is no floor pa- parallel to the road su-face. Ti is makes mounting seats and whee's difficult
- The shape tapers to a point making the mounting of the sole panels problematic

Possible car body

Both designs (1) Δ (2) have rounded E-outs, tapered backs and room for 2 panels
design (1) is more compact with a larger frontal area. whenas design (2) is much longe - with a smaller Frontal oren

Wee will investigate design (2) in more depth as the smaller frontal area means less drag and potentially betteaerodynamics
Top \quad :en
The top view snow indicate, how the t eardrop shape cabe maintained and therefore directing air smoothly around the ca-. TuTs will give the nose of the car a spherical rather than cylindrical shape

with the size of the solapanels being $170 \times 85 \mathrm{~mm}$ The car is too bis to be printed in one piece r (bed size 200×200) therefore the body pieces will be split as shown

At each end section collars (red) will be printed to reinforce the thin shall (black) allowing it to nave strength and a void for mechanical parts

With the wheels being quite thin they may wobble slightly or the axles which will lead to problems in it t-auelling st-aisht. Extending the hus will significantly reduce this frohappening

This is the final, rendered $C 40$ desist' of the car bods. These files will be 30 printed over- the coming days.

Overall the design sucessfull y meets, ord builds on, the ideas from early in this project

During the modelling process these indentations were added. The purpose of these was to sit the solar panels flush with the body of the car and there fore limiting bras.

This image shows the lo cation of the motor- in The body of the can.

The collar for each section used to join and support each section is also visible

The wheels with extended hubs and rubber band tread is also evident here as is the laser cut base

Along this side the wall of the print Warped due to being so thin and having a long distance to span

I attempted to $f i x$ this using a heat gun and flattening it, however that resulted in the F in is see-

$$
\begin{aligned}
& \text { splitting the lust } \\
& \text { section of the pint }
\end{aligned}
$$ into 3 separate prints a in ed to reduce warping by reducing the span

with the smaller span between the reinforcing sections this \checkmark resulted in a much better print quality)

When we recieved the sola- panels we found that they were langer than stated and hence did not f it in the voids. This resulted in having to mount the panels on top
I also d is covered that I had not left holes to allow the wires to get inside the can. A drill was used to make a small hole for these

Another issue that was discovered with these plans was that I had not left a hole for the axle.

The body was cut using side cutters and sealed using a soldering inorg.
It was a bit messy as a solution, but solved the problem

To test the function of the car it was \checkmark un 3 times over the same distance in bot ix series and parallel. The times for this test are in the table below.

Run	Series	Parallel
1	9.59	20.09
2	11.05	18.51
3	10.70	19.91
Avg	10.45	19.50

The experimental results appear to confirm the predictal ones. By running the panels in series rather than parallel the voltages are added, sending double the voltage to the motor and approx hating the time

